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Re-sampling - Introduction

We have relied on idealized models of the origins of 
our data (ε ~N) to make inferences 

But, these models can be inadequate

Re-sampling techniques allow us to base the analysis 
of a study solely on the design of that study, rather 
than on a poorly-fitting model



Why Re-sampling?

 Fewer assumptions

 Ex: re-sampling methods do not require that 
distributions be Normal or that sample sizes be 
large

 Generality: Re-sampling methods are remarkably 
similar for a wide range of statistics and do not 
require new formulas for every statistic

 Promote understanding: Bootstrap procedures 
build intuition by providing concrete analogies to 
theoretical concepts



Re-sampling

Collection of procedures to make statistical inferences 
without relying on parametric assumptions

•Bias

•Variance, measures of error

•Parameter estimation

•Hypothesis testing



Error Estimation

 Error estimation is concerned with establishing whether 
the results we have obtained on a particular experiment 
are representative of the truth or whether they are 
meaningless.

 Traditionally, error estimation was performed using the 
classical parametric (and sometimes, non-parametric).

 More recently, however, new tests have emerged for error 
estimation, based on re-sampling methods, that have the 
advantage of not making distributional assumptions the 
way parametric tests do. The tradeoff, though, is that such 
tests require high computational power. 
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Traditional Statistical Methods 

versus Resampling Methods
 Classical parametric tests compare observed statistics to 

theoretical sampling distributions.

 Re-sampling makes statistical inferences based upon 

repeated sampling within the same sample.

 Re-sampling methods stem from Monte Carlo simulations, 

but differ from them in that they are based upon some real 

data; Monte Carlo simulations, on the other hand, could be 

based on completely hypothetical data.
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Error Estimation through Resampling 

Techniques in Machine Learning

 Error estimation through re-sampling techniques is 
concerned with finding the best way to utilize the 
available data to assess the quality of our 
algorithms. 

 In other words, we want to make sure that our 
classifiers are tested on a variety of instances, 
within our sample, presenting different types of 
properties, so that we don't mistaken good 
performance on one type of instances as good 
performance across the entire domain.

7



Resampling

With replacement

Without replacement
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Re-Sampling Approaches

• Cross-validation

• Jackknife (Leave-one-out)

• Bootstrapping 

• Randomization



Cross-Validation

 A sample is randomly divided into two or more subsets 
and test results are validated  by comparing across sub-
samples.

 The purpose of cross-validation is to find out whether 
the result is replicable or whether it is just a matter of 
random fluctuations.

 If the sample size is small, there is a chance that the 
results obtained are just artifacts of the sub-sample. In 
such cases, the jackknife procedure is preferred.
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Jackknife

 In the Jackknife or Leave-One-Out approach, rather 
than splitting the data set into several subsamples, 
all but one sample is used for training and the 
testing is done on the remaining sample. This 
procedure is repeated for all the samples in the data 
set.

 The procedure is preferable to cross-validation when 
the distribution is widely dispersed or in the 
presence of extreme scores in the data set.

 The estimate produced by the Jackknife approach is 
less biased, in the two cases mentioned above than 
cross-validation.
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Bootstrapping and Randomization: 

Main Ideas
 Bootstrapping makes the assumption that the sample is 

representative of the original distribution, and creates over 
a thousand bootstrapped samples by drawing, with 
replacement, from that pseudo-population. 

 Randomization makes the same assumption, but, instead of 
drawing samples with replacement, it reorders (shuffles) 
the data systematically or randomly a thousand times or 
more. It calculates the appropriate test statistic on each 
reordering. 

 Since shuffling the data amounts to sampling without
replacement, the issue of replacement is one factor that 
differentiates the two approaches. 
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Bootsrapping

 One can understand the concept of bootstrapping by thinking of what can 
be done when not enough is known about the data.

 For example, let us assume that we don't know the standard error of the 
difference of medians. One solution consists of  drawing many pairs of 
samples, calculating and recording, for each of these pairs of samples, the 
difference between the medians, and outputting the standard deviation of 
these differences in lieu of the standard error of the difference of 
medians. 

 In other words, bootstrapping consists of using an empirical, brute-force 
solution when no analytical solution is available. 

 Bootstrapping is also very useful in cases where the sample is too small 
for techniques such as cross-validation or leave-one out to provide a good 
estimate, due to the large variance a small sample will cause in such 
procedures.



Resampling
Bootstrap

•Hypothesis testing, parameter estimation, assigning 
measures of accuracy to sample estimates e.g.: se, CI

•Useful when:

• formulas for parameter estimates are based on 
assumptions that are not met

• computational formulas only valid for large samples

• computational formulas do not exist

•Assume that sample is representative of population

•Approximate the distribution of the population by repeatedly 
resampling (with replacement) from the sample
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Bootstrap
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Resampling
Bootstrap

Non-parametric bootstrap
resample observation from original samples

Parametric bootstrap
fit a particular model to the data and then use this 

model to produce bootstrap samples



Confidence intervals
Parametric Bootstrap
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Params

β

α

Confidence intervals
Parametric Bootstrap



Params

β*1

α*1

Confidence intervals
Parametric Bootstrap



Params

β*2

α*2

Confidence intervals
Parametric Bootstrap



Confidence intervals
Parametric Bootstrap

Params

β*nboot

α*nboot



Bootstrap
Caveat

Independence

Incomplete data

Outliers

Cases where small perturbations to the data-
generating process produce big swings in the 
sampling distribution



Resampling
Jackknife

Tukey 
1958

Quenouille 1956

Estimate bias and variance of a statistic

Concept: Leave one observation out and recompute 
statistic



Cross-validation
Jackknife

Assess the performance of the model

How accurately will the model predict a 
new observation?
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Jackknife Bootstrap 
Differences

Both estimate variability of a statistic between subsamples

Jackknife provides estimate of the variance of an 
estimator

Bootstrap first estimates the distribution of the estimator. 
From this distribution, we can estimate the variance

Using the same data set:

bootstrap results will always be different (slightly)

jackknife results will always be identical



Resampling
Monte Carlo

Stanisław 
Ulam

John von Neumann

Mid 1940s

“The first thoughts and attempts I made to practice 

[the Monte Carlo Method] were suggested by a 

question which occurred to me in 1946 as I was 

convalescing from an illness and playing solitaires. 

The question was what are the chances that a 

Canfield solitaire laid out with 52 cards will come out 

successfully? After spending a lot of time trying to 

estimate them by pure combinatorial calculations, I 

wondered whether a more practical method than 

"abstract thinking" might not be to lay it out say one 

hundred times and simply observe and count the 

number of successful plays.”



Resampling
Monte Carlo

Monte Carlo methodS: 

not just one 
no clear consensus on how they should be defined

Commonality:

repeated sampling from populations with known 
characteristics,

i.e. we assume a distribution and create random samples 
that follow that distribution, then compare our estimated 
statistic to the distribution of outcomes



Comparison
In principle both the parametric and the non-parametric bootstrap are special 
cases of Monte Carlo simulations used for a very specific purpose: estimate 
some characteristics of the sampling distribution.

The idea behind the bootstrap is that the sample is an estimate of the 
population, so an estimate of the sampling distribution can be obtained by 
drawing many samples (with replacement) from the observed sample, compute 
the statistic in each new sample.

Monte Carlo simulations are more general: basically it refers to repeatedly 
creating random data in some way, do something to that random data, and 
collect some results. 

This strategy could be used to estimate some quantity, like in the bootstrap, but 
also to theoretically investigate some general characteristic of an estimator 
which is hard to derive analytically. 

In practice it would be pretty safe to presume that whenever someone speaks of 
a Monte Carlo simulation they are talking about a theoretical investigation, e.g. 
creating random data with no empirical content what so ever to investigate 
whether an estimator can recover known characteristics of this random `data', 
while the (parametric) bootstrap refers to an emprical estimation. The fact that 
the parametric bootstrap implies a model should not worry you: any empirical 

estimate is based on a model. 



Reasons for Supporting 

resampling

 Do not make assumptions about the sample and the 
population.

 Conceptually clean and simple.

 Useful when sample sizes are small and the distributional 
assumptions made by classical techniques cannot be made.

 Some people argue that re-sampling techniques will work 
even if the data sample is not random. Others remain 
skeptical, however, since non-random samples may not be 
representative of the population.
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Reasons for Supporting resampling

 Even if a data set meets parametric assumptions, if that set 
is small, the power of the conclusions, in classical statistics 
will be low. Re-sampling techniques should suffer less from 
this.

 If the data set is too large, any null hypothesis can be 
supported using classical techniques. Cross-validation can 
help relieve this problem.

 Classical procedures do not inform researchers of how likely 
the results are to be replicated. Cross-validation and 
Bootstrapping can be seen as internal replications (external 
replication is still necessary for confirmation purposes, but 
internal replication is useful to establish as well).
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Reasons for Supporting resampling

 Re-sampling techniques are not devoid of assumptions. The hidden 
assumption is that the same numbers are used over and over to get 
an answer that cannot be obtained in any other way.

 Because re-sampling techniques are based on a single sample, the 
conclusions do not generalize beyond that particular sample.

 Confidence intervals obtained by simple bootstrapping are always 
biased.

 If the collected data is biased, then re-sampling technique could 
repeat and magnify that bias.

 If researchers do not conduct enough experimental trials, then the 
accuracy of re-sampling estimates may be lower than those 
obtained by conventional parametric techniques.
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Discussion

Was the bootstrap example showed parametric or non-
parametric?

Could you think an example of the other case?

So, what’s the difference between a bootstrap and a 
Monte Carlo?


